

Ziehdüse Mit Nano-Diamantbeschichtung, Hfcvd-Ausrüstung

Artikelnummer: MP-CVD-100

Einführung

Das Ziehwerkzeug für die Nano-Diamant-Verbundbeschichtung verwendet Sinterkarbid (WC-Co) als Substrat und nutzt die chemische Gasphasenmethode (kurz CVD-Methode), um die herkömmliche Diamant- und Nano-Diamant-Verbundbeschichtung auf die Oberfläche des Innenlochs der Form aufzubringen.

Mehr erfahren

Vergleichstabelle zwischen herkömmlichen und nanodiamantbeschichteten Ziehsteinen

Technische Zusammensetzung von HFCVD		
Technische Parameter	Zusammensetzung der Ausrüstung	Systemkonfiguration
Glasglocke: Durchm. 500 mm, Höhe 550 mm, Kammer aus Edelstahl SUS304; innere Edelstahlhautisolierung, Hubhöhe beträgt 350 mm;	Ein Satz Hauptkörper der Vakuumkammer (Glocke) (ummantelte Wasserkühlungsstruktur)	Hauptkörper der Vakuumkammer (Glocke); Der Hohlraum besteht aus hochwertigem Edelstahl 304; Vertikale Glasglocke: Der ummantelte Wasserkühlmantel ist am gesamten Umfang der Glasglocke angebracht. Die Innenwand der Glasglocke ist mit einer Edelstahlhaut isoliert und die Glasglocke ist seitlich befestigt. Genaue und stabile Positionierung; Beobachtungsfenster: horizontal in der Mitte der Vakuumkammer angeordnet. 200-mm-Beobachtungsfenster, Wasserkühlung, Prallplatte, seitliche und obere Konfiguration, 45-Grad-Abschrägungswinkel, 50°-Beobachtungsfenster (beobachten Sie den gleichen Punkt wie das horizontale Beobachtungsfenster und die Probentragplattform); Die beiden Beobachtungsfenster behalten die bestehende Position und Größe bei. Der Boden der Glasglocke ist 20 mm höher als die Ebene der Bank, eingestellte Kühlung; Die im Flugzeug reservierten Löcher, wie z. B. große Ventile, Entlüftungsventile, Luftdruckmessung, Bypassventile usw., sind mit Metallgitter abgedichtet und für die Installation der Elektrodenschnittstelle reserviert.
Gerätetisch: L1550* B900*H1100mm	Ein Satz Schleppprobentischgeräte (mit Doppelachsenantrieb)	Probenhaltergerät: Probenhalter aus Edelstahl (Schweißwasserkühlung), 6-Positionen-Gerät; Es kann separat eingestellt werden, nur nach oben und unten verstellbar, der Einstellbereich nach oben und unten beträgt 25 mm, und das linke und rechte Schütteln muss beim Auf- und Abfahren weniger als 3 % betragen (d. h. das linke und rechte Schütteln von). Das Ansteigen oder Absenken um 1 mm beträgt weniger als 0,03 mm und der Probentisch dreht sich beim Anheben oder Absenken nicht.
Endvakuumgrad: 2,0×10-1Pa;	Eine Reihe von Vakuumsystemen	Vakuumsystem: Konfiguration des Vakuumsystems: mechanische Pumpe + Vakuumventil + physisches Entlüftungsventil + Hauptabgasrohr + Bypass; (vom Vakuumpumpenlieferanten bereitgestellt), das Vakuumventil verwendet ein pneumatisches Ventil; Vakuumsystemmessung: Membrandruck.
Druckanstiegsrate: ≤5Pa/h;	Zweikanaliges Massendurchflussmesser- Gasversorgungssystem	Gasversorgungssystem: Der Massendurchflussmesser wird von Partei B konfiguriert, Zwei-Wege- Lufteinlass, die Durchflussrate wird durch den Massendurchflussmesser gesteuert, nach dem Zwei- Wege-Treffen gelangt er von oben in die Vakuumkammer und von innen des Lufteinlassrohrs beträgt 50 mm
Bewegung des Probentisches: Auf- und Abwärtsbereich beträgt ± 25 m; Es ist erforderlich, das Verhältnis von links und rechts beim Auf- und Abwärtsfahren um ± 3 % zu schütteln.	Ein Satz Elektrodengerät (2 Kanäle)	Elektrodengerät: Die Längsrichtung der vier Elektrodenlöcher verläuft parallel zur Längsrichtung der Stützplattform und die Längsrichtung zeigt zum Hauptbeobachtungsfenster mit einem Durchmesser von 200 mm.
Arbeitsdruck: Membranmanometer-Manometer verwenden, Messbereich: 0 \sim 10 kPa; Arbeitskonstante bei 1 kPa \sim 5 kPa, der konstante Druckwert ändert sich um plus oder minus 0,1 kPa;	Eine Reihe von Kühlwassersystemen	Kühlwassersystem: Die Glocke, die Elektroden und die Bodenplatte sind alle mit Kühlleitungen für zirkulierendes Wasser und mit einem Alarmgerät für unzureichenden Wasserdurchfluss ausgestattet. 3.7: Steuersystem. Schalter, Instrumente, Instrumente und Stromversorgung für Glockenanheben, Luftablass, Vakuumpumpe, Hauptstraße, Bypass, Alarm, Durchfluss, Luftdruck usw. sind an der Seite des Ständers angebracht und werden über einen 14-Zoll-Touchscreen gesteuert; Das Gerät verfügt über ein vollautomatisches Steuerprogramm ohne manuelle Eingriffe und kann Daten und Anrufdaten speichern

Position des Lufteinlasses: Der Lufteinlass befindet sich oben an der Glasglocke und Kontrollsystem die Position der Auslassöffnung befindet sich direkt unter dem Probenhalter. Ein Satz automatischer Steuerungssystem: SPS-Steuerung + 10-Druckregelsysteme (originales Zoll-Touchscreen Druckregelventil aus Deutschland importiert) Aufblassystem: 2-Kanal-Massendurchflussmesser, Durchflussbereich: 0-2000 sccm und 0-200 sccm; Pneumatisches Ventilventil Widerstandsvakuummeter 3.1.10 Vakuumpumpe: D16C Vakuumpumpe

Oberflächenreibungskoeffizient

itioneller Zeichenstempel Ziehmatrize mit Nanodiamantbeschichtung
keiner 20~80nm
keiner ≥99 %
keiner 10 ~ 15 mm
Klasse A: Ra≤0,1 mm Ra≤0,1mm Klasse B: Ra≤0,05 mm
Φ3 ~ Φ70mm Φ3 ~ Φ70mm
Lebensdauer hängt von Arbeitsbedingungen ab 6-10 mal länger
Ra \leq 0,1mm Klasse B: Ra \leq 0,05 Φ 3 ~ Φ 70mm Φ 3 ~ Φ 70mm Lebensdauer hängt von

0,8

0,1